1000	10000	20000	 00000	
10000	1000000	10000	 999999	
1000	500000	2000	1000	
10000			10000	
				ര
				S

Using Traces for TCP/IP Throughput Performance Problems

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

How do we determine if we have a throughput performance problem?

Ways in z/OS CS to measure throughput performance

≻Typical FTP data transfer

- ≻Thruput issues:
 - The effect of high network latency
 - The effect of dropped packets
 - The effect of dropping window size
 - The effect of packet fragmentation

What to look for in SYSTCPDA Component Trace

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

Debugging Throughput Performance Problems

© Copyright International Business Machines Corporation 2004,2005. All rights reserved. Using Traces for TCPIP Throughput Performance Problems.PRZ - 05-10-07 - 10:22 - Page 3

What constitutes a throughput performance problem?

• We typically classify problems into two issues:

- Slow data transfers
- Terminated or aborted data transfers
- Note that--for the purposes of this presentation--there are really two types of terminated/aborted transfers:
 - Those caused by severe performance problems leading to timeout conditions (dropped packets, failure to recover from a zero sized window, etc.)
 - Those caused by non-performance related issues (connections reset by firewalls, application errors, etc.)
- Only performance related issues will be discussed in this presentation

What metrics do we can we use to calculate a transfer's performance?

- Network Latency
 - This is defined as the amount of time it takes for a packet to reach its destination
 - We have three ways of obtaining a rough estimate of this from our packet

traces:

- The delta time between syn packets in a transfer
- The average RTT (round trip time) listed in a session formatted packet trace
- Find the data delta between the last acknowledged packet and the last data packet
- In both the delta time and the RTT, the latency will be roughly half the value

Bandwidth

- This is defined as the average amount of data that is transferred over a set period of time
- We can determine this from the throughput listed in a session formatted packet trace

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

Gathering SYSTCPDA trace on z/OS

- SYSTCPDA (PKTTRACE) parameters
 - V TCPIP,tcp_proc,PKTTRACE,CLEAR
 - V TCPIP,tcp_proc,P,IP=xx.xx.xx.xx
 - TRACE CT,ON,COMP=SYSTCPDA,SUB=(tcp_proc)
 - -R xx,WTR=PKTWRT,END

Step by step:

- 1) TRACE CT, WTRSTART=PKTWRT (starts the writer for packet tracing)
- 2) Clear the previous packet trace settings:
 - V TCPIP,tcp_proc,PKTTRACE,CLEAR
- 3) Set TCPIP Packet Trace settings
 - V TCPIP,tcp_proc,PKTTRACE,FULL,IP=ipaddress of the client
- 4) Start Packet trace/Connect the writer TRACE CT,ON,COMP=SYSTCPDA,SUB=(tcpipproc) R xx,WTR=PKTWRT,END
- 5) *** RECREATE SCENARIO ***
- 6) TRACE CT, OFF, COMP=SYSTCPDA, SUB=(tcpipproc)
- 7) TRACE CT, WTRSTOP=PKTWRT, FLUSH

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

Formatting SYSTCPDA trace on z/OS

Use IPCS

► IPCS Interactive

Option 2	2.7.1.d	
System	===>	(System name or blank)
Subnames	===>	(Component name (required))
GMT/LOCAL Start time Stop time Limit Report type User exit Override so Options	===> G ===> G ===> 0 ===> O ===> SHORT ===> ===>	(G or L, GMT is default) (mm/dd/yy, hh: mm: ss. dddddd or mm/dd/yy, hh. mm. ss. dddddd) Exception ===> (SHort, SUmmary, Full, Tally) (Exit program name)

To enter/verify required values, type any character Entry IDs ===> Jobnames ===> ASIDs ===> OPTIONS ===> SUBS ===>

ENTER = update CTRACE definition. END/PF3 = return to previous panel.

S = start CTRACE. R = reset all fields.

► IPCS in batch

IPCS

SETDEF NOCONFIRM PRINT NOTERM DROPDUMP DDNAME(PKTTRACE) CTRACE COMP(SYSTCPDA) LOCAL FULL OPTIONS((SESS)) SETDEF CONFIRM NOPRINT TERM

-Refer to:

z/OS V1R6.0 MVS Interactive Problem Control System (IPCS) Commands -

chapter 8

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

SYSTCPDA SESSion output

10 packets summarized

Local I	p Address:
Remote	Ip Address:

10. 1. 4. 225 12. 106. 255. 57

Host:	Local,	Remote
Client or Server:	Unknown,	Unknown
Port:	397,	2765
Application:	mptn,	
Link speed (parm):	10,	10 Megabits/s

2005/02/15 11: 00: 07. 494635 2005/02/15 11: 11: 34. 991160 00: 11: 27. 496525 0. 000 sec 0. 000 sec ESTABLI SHED 0

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

Data Quantity & Throughput:	I nbound,	Outbound	
Application data bytes:	0,	0	
Sequence number del ta:	0,	0	
Total bytes Sent:	0,	0	
Bytes retransmitted:	0,	0	
Throughput:	0,	0	Kilobytes/s
<u>Bandwidth utilization:</u>	0. 67%,	0.67%	
Del ay ACK Threshold:	200,	200	ms
Minimum Ack Time:	0.00000,	0.00000	
Average Ack Time:	0.00000,	0.00000	
Maximum Ack Time:	0. 000000,	0.00000	
Data Segment Stats:	I nbound,	Outbound	
Number of data segments:	0,	0	
Maximum segment size:	0,	0	
Largest segment size:	0,	0	
Average segment size:	0,	0	
Smallest segment size:	0,	0	
Segments/window:	0.0,	0.0	
Average bytes/window:	0,	0	
Most bytes/window:	О,	0	

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

Window Stats:	I nbound,	Outbound
Number of windows:	Ο,	0
Maximum window size:	0,	32697
Largest window advertised:	0,	32697
Average window advertised:	0,	32697
Smallest window advertised:	0,	32697
Window scale factor:	0,	0
Window frequency:	0,	0 Windows/s
Time Stamp updates:	0,	0
Total Round Trip Time:	0.000000,	0.000000 (0%), (0%)
Average Round Trip Time:	0.000000,	0.000000
Maximum Data in Pipe:	0,	0
Maximum retransmisson:	Ο,	0

Number of:	I nbound,	Outbound	
Packets:	Ο,	10	
(x) Untraced Packets:	Ο,	0	
(.) In-order data:	Ο,	0	(0.00%), (0.00%)
(a) Acknowl edgments:	Ο,	0	(0.00%), (0.00%)
(+) Data and ACK:	Ο,	0	(0.00%), (0.00%)
(u) Duplicate ACKs:	Ο,	9	(0.00%), (90.00%)
(w) Window size updates:	Ο,	1	(0.00%), (10.00%)
(z) Zero window sizes:	Ο,	0	(0.00%), (0.00%)
(p) Window probes:	Ο,	0	(0.00%), (0.00%)
(k) Keepalive segments:	Ο,	0	(0.00%), (0.00%)
(r) Retransmi ssi ons:	Ο,	0	(0.00%), (0.00%)
(o) Out-of-order:	Ο,	0	(0.00%), (0.00%)
(d) Del ayed ACKs:	Ο,	0	(0.00%), (0.00%)
(f) Fragments:	0,	0	(0.00%), (0.00%)
Time Spent on:	I nbound,	Outbound	
(.) In-order data:	00: 00: 00. 000000,	00: 00: 00. 000000	(0.00%), (0.00%)
(a) Acknowl edgments:	00: 00: 00. 000000,	00: 00: 00. 000000	(0.00%), (0.00%)
(+) Data and ACK:	00: 00: 00. 000000,	00: 00: 00. 000000	(0.00%), (0.00%)
(u) Duplicate ACKs:	00: 00: 00. 000000,	00: 11: 27. 496525	(0.00%), (78.12%)
(w) Window size updates:	00: 00: 00. 000000,	00: 00: 00. 000000	(0.00%), (0.00%)
(z) Zero window sizes:	00: 00: 00. 000000,	00: 00: 00. 000000	(0.00%), (0.00%)
(p) Window probes:	00: 00: 00. 000000,	00: 00: 00. 000000	(0.00%), (0.00%)
(k) Keepalive segments:	00: 00: 00. 000000,	00: 00: 00. 000000	(0.00%), (0.00%)
(r) Retransmi ssi ons:	00: 00: 00. 000000,	00: 00: 00. 000000	(0.00%), (0.00%)
(o) Out-of-order:	00: 00: 00. 000000,	00: 00: 00. 000000	(0.00%), (0.00%)
(d) Del ayed ACKs:	00: 00: 00. 000000,	00: 00: 00. 000000	(0.00%), (0.00%)
(f) Fragments: ^{© Copyright Internation}	onal Business Machines Corpora	Ation 2004,2005. All rights rese	$e^{i} e^{i} e^{i} = 0$
-			100 1 1001em3.1 112 - 00-10-07 - 10.22 - Paye 11

Number of:	I nbound,	Outbound		
(S) SYN:	Ο,	0	(0.00%),	(0.00%)
(A S) ACK SYN:	Ο,	0	(0.00%),	(0.00%)
(F) FIN:	Ο,	0	(0.00%),	(0.00%)
(A F) ACK FIN:	Ο,	0	(0.00%),	(0.00%)
(R) RST:	Ο,	0	(0.00%),	(0.00%)
(U) URG:	0,	0	(0.00%),	(0.00%)
Time Spent on:	I nbound,	Outbound		
(S) SYN:	00: 00: 00. 000000,	00: 00: 00. 000000	(0.00%),	(0.00%)
(A S) ACK SYN:	00: 00: 00. 000000,	00: 00: 00. 000000	(0.00%),	(0.00%)
(F) FIN:	00: 00: 00. 000000,	00: 00: 00. 000000	(0.00%),	(0.00%)
(A F) ACK FIN:	00: 00: 00. 000000,	00: 00: 00. 000000	(0.00%),	(0.00%)
(R) RST:	00: 00: 00. 000000,	00: 00: 00. 000000	(0.00%),	(0.00%)
(U) URG:	00: 00: 00. 000000,	00: 00: 00. 000000	(0.00%),	(0.00%)

TcpHdr	10	F	Seq	Ack	RcvWnd	Data	Delta Time	Ti meStamp	RcdNr	State	Inf	lp_id	Rtt
· AP	0	W	2691883512	1129000329	32697	0	0.000000	11:00:07.494635	76	ESTABLI SHED	1	A828	0.00
AP	0	u	2691883512	1129000329	32697	0	76. 474337	11: 01: 23. 968972	87	ESTABLI SHED	1	E477	0.00
AP	0	u	2691883512	1129000329	32697	0	76. 421369	11: 02: 40. 390341	123	ESTABLI SHED	1	41B3	0.00
AP	0	u	2691883512	1129000329	32697	0	76. 445911	11: 03: 56. 836252	136	ESTABLI SHED	1	6BD1	0.00
AP	0	u	2691883512	1129000329	32697	0	76. 416353	11: 05: 13. 252605	169	ESTABLI SHED	1	96C4	0.00
AP	0	u	2691883512	1129000329	32697	0	76. 427137	11: 06: 29. 679742	180	ESTABLI SHED	1	DA2D	0.00
AP	0	u	2691883512	1129000329	32697	0	76. 497060	11: 07: 46. 176802	212	ESTABLI SHED	1	085B	0.00
AP	0	u	2691883512	1129000329	32697	0	76. 567341	11:09:02.744143	225	ESTABLI SHED	1	46BB	0.00
AP	0	u	2691883512	1129000329	32697	0	75. 626664	11: 10: 18. 370807	239	ESTABLI SHED	1	6FC6	0.00
AP	0	u	2691883512	1129000329	32697	0	76. 620353	11: 11: 34. 991160	269	ESTABLI SHED	1	9CD9	0.00

Estimating network latency from a packet trace

Using the RTT:

Connection:	
First timestamp:	2004/03/08 18:28:34.828020
Last timestamp:	2004/03/08 18:28:53.995294
Duration:	00:00:19.167274
Average Round-Trip-Time:	0.194 sec
Final Round-Trip-Time:	1.545 sec
Final state:	TIME_WAIT (ACTIVE CLOSE)
Out-of-order timestamps:	1

Using the delta time between packets:

TcpHdı	2	IO	\mathbf{F}	Seq	Ack	RcvWnd	Data	Delta Time	
	S	I		2334250646	0	262144	þ	0.00000	
A	S	0		3133347901	2334250647	262144	þ	0.000113	
Α		I	u	2334250647	3133347902	262144	d	0.201817	/

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

Using the data delta between the last acknowledged packet and the last data packet sent.

TcpHdr	IO	F	Seq	Ack	RcvWnd	Data	Delta Time	
Α	0	•	3134061590	2334250647	262144	1448	0.00001	18:28:39.503446
Α	0	•	3134063038	2334250647	262144	1448	0.00001	18:28:39.503447
Α	0	•	3134064486	2334250647	262144	1448	0.000021	18:28:39.503468
AP	0	. (3134065934	2334250647	262144	1448	0.000001	18:28:39.503469
Α	I	a	2334250647	3133974710	262144	0	0.000064	18:28:39.503533

- 1. Take the SEQ number of the last data packet sent. 3134065934
- 2. Add in the data sent on that packet 3134065934 + 1448 = 3134067382

- 3. Subtract the ACK number of the last acknowledgment received 3134067382 3133974710 = 92672
- 4. Thus we know that 92672 bytes of data still remain in the pipe. Another way to think of this is that there are 92672 bytes worth of packets that are not acknowledged. This is 64 packets that have been sent by one host but not acknowledged by the receiving host.

This is slightly different than the time it takes a packet to travel from one host to the other, but can be used to gauge the relative amount of time it takes for a packet of data to be received at the remote host. This don't make no sense.

Estimating throughput from a packet trace

Data Quantity & Throughput:	Inbound,	Outbound	
Application data bytes:	Ο,	9788417	
Sequence number delta:	1,	9788418	
Total bytes Sent:	0,	9788416	
Bytes retransmitted:	0,	5792	
Throughput:	0,	638.356	KBytes/s
Bandwidth utilization:	0.00%,	52.29%	
Delay ACK Threshold:	200,	200	ms
Minimum Ack Time:	0.000002,	0.000091	
Average Ack Time:	0.019908,	0.000091	
Maximum Ack Time:	0.199157,	0.000091	

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

What attributes do we find in a typical (well performing) z/OS trace?

- Use of the slow start algorithm after the three-way handshake
 - This allows the stack to gauge how fast to send data
- Data is acknowledged in a timely manner
- Little or no duplicate acknowledgments or retransmitted packets
- Constant flow of data
 - Any periods in which a host is not sending data is wasted time

© Copyright International Business Machines Corporation 2004,2005. All rights reserved. Using Traces for TCPIP Throughput Performance Problems.PRZ - 05-10-07 - 10:22 - Page 17

Example of a typical trace

TcpHd	2	IO E	7	Seq	Ack	RcvWnd	Data	Delta Time	TimeStamp	RcdNr	State	Inf
	S	I		2334250646	0	262144	0	0.00000	18:28:34.828020	32	SYN_RCVD	1
A	S	0		3133347901	2334250647	262144	0	0.000113	18:28:34.828133	33	SYN_RCVD	1
А		Iι	ı	2334250647	3133347902	262144	0	0.201817	18:35.029950	35	ESTABLISHED	1
A		0.	•	3133347902	2334250647	262144	1448	0.6350			STABLISHED	1
AP		0.	•	3133349350	2334250647	262144	1448	<	Slow Start		STABLISHED	1
А		ΙĊ	ł	2334250647	3133350798	144	0	0.2067	8:35.872024	39	ESTABLISHED	1
A		0.	•	3133350798	23342505	4	1448	0.000092	18:28:35.872116	40	ESTABLISHED	1
А		Ο.	•	3133352246	2334 , c or	X 44	1448	0.00001	18:28:35.872117	41	ESTABLISHED	1
AP		Ο.	•	3133353694	2 acks	262144	1448	0.00001	18:28:35.872118	42	ESTABLISHED	1
А		Ιa	a	233425	licate sions 4	262144	0	0.197702	18:28:36.069820	44	ESTABLISHED	1
А		Ο.	•	3133	Pinsmis 50647	262144	1448	0.000097	18:28:36.069917	45	ESTABLISHED	1
А		Ο.	•	317 No et	34250647	262144	1448	0.00002	18:28:36.069919	46	ESTABLISHED	1
AP		Ο.	•	3/	2334250647	262144	1448	0.00001	18:28:36.069920	47	ESTABLISHED	1
А		Ιa	/		3133358038	262144	0	0.197876	18:28:36.267796	48	ESTABLISHED	1
A		04		3133359486	2334250647	262144	1448	0.000105	18:28:36.267901	49	ESTABLISHED	1
A		Ο.	•	3133360934	2334250647	262144	1448	0.000026	18:28:36.267927	50	ESTABLISHED	1
А		0.	•	3133362382	2334250647	262144	1448	0.00001	1 36.267928	51	ESTABLISHED	1
AP		Ο.	•	3133363830	2334250647	262144	1448	0.00001	18: 7929	52	ESTABLISHED	1
А		Ιa	a	2334250647	3133363830	262144	0	0.197944	18:28 °Co. 73	53	ESTABLISHED	1
А		Ο.	•	3133365278	2334250647	262144	1448	0.000160	18:28:3	54	ESTABLISHED	1
А		0.	•	3133366726	2334250647	262144	1448	0.00002	18:28:36.466	55	ESTABLISHED	1
А		0.	•	3133368174	2334250647	262144	1448	0.00001	18:28:36.466036	20n	ESTABLISHED	1
А		0.	•	3133369622	2334250647	262144	1448	0.00001	18:28:36.466037	~S.G	ABLISHED	1
AP		0.	•	3133371070	23342506		1448	0.00001	18:28:36.466038	58	T SHED	1
А		Ιa	a	2334250647	31322 fl	N _144	0	0.197832	18:28:36.663870	59	ESE ISHED	1
А		0.	•	3133372518	data	262144	1448	0.000106	18:28:36.663976	60	ESTABLISHED	1
А		Ο.	•	31333	nt 1250647	262144	1448	0.00002	18:28:36.663978	61	ESTABLISHED	1
А		Ο.		CONSU	2334250647	262144	1448	0.00001	18:28:36.663979	62	ESTABLISHED	1
A		Ο.	•	76862	2334250647	262144	1448	0.00001	18:28:36.663980	63	ESTABLISHED	1
A		Ο.	•	3133378310	2334250647	262144	1448	0.00001	18:28:36.663981	64	ESTABLISHED	1
AP		Ο.	•	3133379758	2334250647	262144	1448	0.00001	18:28:36.663982	65	ESTABLISHED	1
А		IC	ł	2334250647	3133379758	262144	0	0.200345	18:28:36.864327	66	ESTABLISHED	1

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

How does increased network latency effect a transfer?

- The longer the round trip time between two hosts, the longer it takes for adjustments to the transfer to occur
 - For example, window size updates may not occur in a timely manner (a similar situation can occur with retransmitted packets and duplicate ACKs)

By the time the window update arrives at the sender, 5 additional data packets have been sent

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

- Another example is filling up the advertised window size.
 - If the sending side fills up the window, it has to wait for an acknowledgment to arrive--opening the window back up--before additional data can be sent

Packet 4 fills the window (the unacknowledged data in the pipe). As such, no additional data can be sent until a previous packet is acknowledged.

© Copyright International Business Machines Corporation 2004,2005. All rights reserved. Using Traces for TCPIP Throughput Performance Problems.PRZ - 05-10-07 - 10:22 - Page 20

- Generally, high network latency by itself does not create a problem
 - It does, however, amplify other problems when they do occur
 - It can also prolong the amount of time required to recover from an error.
- Example of a transfer with a heightened network latency in which no error occurs:

	TcpHdr	IO E	7	Seq	Ack	RcvWnd	Data	Delta Time	
1<-	A	Ο.	. 5	5462055798	2268250647	262144	1448	0.000200	
2	Α	Ο.	. 5	5462057246	2268250647	262144	1448	0.000100	
3	Α	Ο.	. 5	5462058694	2268250647	262144	1448	0.000100	
4	Α	Ο.	. 5	5462060142	2268250647	262144	1448	0.000100	7.
5	Α	Ο.	. 5	5462061590	2268250647	262144	1448	0.000100	
6	Α	Ο.	. 5	5462063038	2268250647	262144	1448	0.000100	
7	Α	Ο.	. 5	5462064486	2268250647	262144	1448	0.002100_	
8	AP	Ο.	. 5	5462065934	2268250647	262144	1448	0.000100	
9	Α	Ia	a 2	2268250647	5461974710	262144	0	0.006400	
10	Α	Ο.	. 5	5462067382	2268250647	262144	1448	0.010000	
<	.>								
75	Α	Ο.	. 5	5462151790	2268250647	262144	1448	0.000100	
76	Α	Ο.	. 5	5462153238	2268250647	262144	1448	0.000100	
77	Α	Ο.	. 5	5462154686	2268250647	262144	1448	0.000100	
78	Α	ο.	. 5	5462156134	2268250647	262144	1448	0.000200	
79	Α	ο.	. 5	5462157582	2268250647	262144	1448	0.000100	
80	AP	Ο.	. 5	5462159030	2268250647	262144	1448	0.000100	
81-	>A	Ia	a 2	2268250647	5462057246	218400	0	0.006100	

In this example, 80 packets (both inbound and outbound) are transferred before an acknowledgment arrives indicating that the first packet has been received. © Copyright International Business Machines Corporation 2004,2005. All rights reserved.

Example in which a window is filled and no additional data can be sent

		TcpHdr	IO	F	Seq	Ack	RcvWnd	Data	Delta Time
	1	AP	0	•	3391804923	4198137376	65535	1380	0.00001
	2	А	I	a	4198137376	3391800783	8280	> 0	0.974430
	3	А	0	•	33 <u>918063</u> 03	4198137376	65535	1380	0.000074
	— 4	AP	0	•(3391807683	4198137376	65535	1380	0.00002
	5	А	I	a	4198137376	3391803543	8280	0	0.935102
ST Ja	6	А	0	•	3391809063	4198137376	65535	1380	0.000025
alle	7	AP	0	•	3391810443	4198137376	65535	1380	0.00001
	8	А	I	a	4198137376	3391806303	8280	0	0.973124
	9	А	0	•	3391811823	4198137376	65535	1380	0.000031
	10	0 AP	0	•	3391813203	4198137376	65535	1380	0.00001

Notice the ACK number on packet 2 (3391800783) and the RcvWnd size (8280) --this tells the sender that more data can be sent as long as it does not exceed ACK number 3391800783 + 8280 = 3391809063

The sending side sends two more packets (packet 4 being the second) and stops

Note the SEQ number on packet 4 (3391807683) and the amount of data sent (1380) -- 3391807683 + 1380 = 3391809063

Thus, we know that the sending side is filling the window and having to wait for it to be opened back up before sending more data.

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

How do dropped or missing packets affect a data transfer?

- Dropped or missing packets are never a good sign as they may indicate other troubles within the network.
- However, in the context of a single data transfer, one or two dropped packets have little effect on the overall performance between the two hosts
 - TCP is architected ability to recover from lost data typically (depending on the network latency) allows the two TCPIP stacks to quickly recover from a lost packet
- Performance problems become noticeable when there occurs a consistent packet loss throughout the course of the transfer
 - All of the small recovery delays add up to a large cumulative delay
 Anybody see which way

© Copyright International Business Machines Corporation 2004,2005. All rights reserved

Using Traces for TCPIP Throughput Performance Problems.PRZ - 05-10-07 - 10:22 - Page 23

went?

- Dropped packets result in the following delays:
 - The amount of time for a duplicate ACK (signifying a missing packet) to travel from the receiving stack to the sending stack
 - The amount of time the receiving stack may wait before retransmitting the missing packet (the stack will wait to retransmit in case the missing packet is still enroute)
 - The amount of time for the retransmitted packet to travel from the receiving stack to the sending stack.
 - After this point, the sending stack will typically pick up where it left off
 - However, if duplicate ACKs continue to arrive, the sending stack will begin retransmitting the packet in response

All of this can be compounded by a high network latency

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

Flow of the successful recovery of a dropped packet S R Data 3 Data 4 Data 1 6 e е Ack 1a С n d Data 3 Data 5 Data 4 Data 6 е i. е Ack 1b Ack 1a r V Data 4 Data 5 Data 6 Data 7 е \Box r Ack 1b Data 5 Data 6 Data 7 Data 7 Data 2 Data 6 Data 8 Data 2 Data 9 Data 10 Ack 2

Using Traces for TCPIP Throughput Performance Problems.PRZ - 05-10-07 - 10:22 - Page 25

Using Traces for TCPIP Throughput Performance Problems.PRZ - 05-10-07 - 10:22 - Page 26

Trace example of the previous flow

TC	pHdr	IO	\mathbf{F}	Seq	Ack	RcvWnd	Data	Delta Time	TimeStamp
1	A	I	a	1490971693	2739132871	32768	0	0.085756	10:24:58.135879
2	Α	0	•	2739159151	1490971693	262144	1460	0.000054	10:24:58.135933
3	Α	0	•	2739160611	1490971693	262144	1460	0.000005	10:24:58.135938
4	AP	0	•	2739162071	1490971693	262144	1460	0.000062	10:24:58.136000
5	A	I	U	1490971693	2739132871	32768	0	0.094051	10:24:58.230051
6	A	I	u	1490971693	2739132871	32768	0	0.205426	10:24:58.435477
7	A	I	U	1490971693	2739132871	32768	0	0.095687	10:24:58.531164
8	AP	0	T	2739132871	1490971693	262144	1460	0.000071	10:24:58.531235
9	A	I	u	1490971693	2739132871	32768	0	0.105971	10:24:58.637206
10	A	I	u	1490971693	2739132871	32768	0	0.100483	10:24:58.737689
11	A	I	a	1490971693	2739132871	32768	0	0.092407	10:24:58.830096
12	A	I	P	1490971693	2739132871	32768	0	0.115150	10:24:58.945246
13	A	I	u	1490971693	2739132871	32768	0	0.084884	10:24:59.030130
14	AP	0		2739132871	1490971693	262144	1460	0.085665	10:24:59.115795
15	A	I	ū	1490971693	2739132871	32768	0	0.015070	10:24:59.130865
16	A	I	u	1490971693	2739132871	32768	0	0.099009	10:24:59.229874
17	A	I		1490971693	2739132871	32768	0	0.100359	10:24:59.330233
18	AP	0	r	2739132871	1490971693	262144	1460	0.000042	10:24:59.330275
19	Α	I		1490971693	2739132871	32768	0	0.196344	10:24:59.526619
20	Α	0	r	2739134331	1490971693	262144	1460	0.000090	10:24:59.526709
21	Α	0	r	2739135791	1490971693	262144	1460	0.00004	10:24:59.526713

That's right....keep on going to the next page.

22	A	0 r	2739137251	1490971693	262144	1460	0.00003	10:24:59.526716
23	AP	0 r	2739138711	1490971693	262144	1460	0.00033	10:24:59.526749
24	Α	I u	1490971693	2739132871	32768	0	0.099873	10:24:59.626622
25	Α	Iu	1490971693	2739132871	32768	0	0.099096	10:24:59.725718
26	Α	IU	1490971693	2739132871	32768	0	0.100617	10:24:59.826335
27	Α	0 r	2739140171	1490971693	262144	1460	0.000099	10:24:59.826434
28	Α	0 r	2739141631	1490971693	262144	1460	0.00035	10:24:59.826469
29	AP	0 r	2739143091	1490971693	262144	1460	0.00003	10:24:59.826472
30	Α	I u	1490971693	2739132871	32768	0	0.094342	10:24:59.920814
31	Α	Or	2739132871	1490971693	262144	1460	0.008104	10:24:59.928918
32	Α	0 r	2739134331	1490971693	262144	1460	0.000104	10:24:59.929022
33	A	0 r	2739135791	1490971693	262144	1460	0.00003	10:24:59.929025
34	A	0 r	2739137251	1490971693	262144	1460	0.00013	10:24:59.929038
35	Α	0 r	2739138711	1490971693	262144	1460	0.00003	10:24:59.929041
36	Α	0 r	2739140171	1490971693	262144	1460	0.00003	10:24:59.929044
37	Α	0 r	2739141631	1490971693	262144	1460	0.00013	10:24:59.929057
38	Α	0 r	2739143091	1490971693	262144	1460	0.00003	10:24:59.929060
39	AP	0 r	2739144551	1490971693	262144	1460	0.00013	10:24:59.929073
40	Α	Iu	1490971693	2739132871	32768	0	0.091217	10:25:00.020290
41	Α	I T	1490971693	2739132871	32768	0	0.239321	10:25:00.259611
42	Α	I	1490971693	2739150391	32768	0	0.062420	10:25:00.322031
		Ć						
			\backslash					
			FIAL					
			VIA	11.				
				KY /				

What happens when the window size drops to zero?

- The window size is a TCP implementation that allows a receiving stack to communicate to the sending stack how much additional data it can receive
 - As the stack receives data, it writes it into a buffer (reducing the amount of space available in the buffer)
 - The application reads the data in from this buffer (increasing the amount of space available in the buffer)
 - The window size advertised by the receiving stack tells the sending stack how much space is available in the buffer
 - If the window size drops to zero, (meaning the application is no longer reading in data from the buffer) the sending stack is unable to send any additional data until the window size is increased.
- Things that would cause the window size to drop to zero:
 - The receiving application is hung
 - The receiving application isn't getting enough CPU cycles
 - The receiving stack has been overwhelmed with data from the sending stack

Nope, I ain't got no more room

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

C'mon, take it!

Flow of a window size going to zero

Trace example of a window size dropping to zero

Tcp	Hdr	IO F	Seq	Ack I	RcvWnd	Data De	lta Time	TimeStamp
1	AP	ο.	3104443730	2351016260	65535	16	0.00001	15:19:23.997699
2	Α	Ιw	2351016260	3104408354	35392	0	0.000500	15:19:23.998199
3	Α	Ιa	2351016260	3104409426	34320	0	0.00003	15:19:23.998202
4	Α	Ιa	2351016260	3104410498	33248	0	0.00003	15:19:23.998205
<	.>							
31	Α	Ιa	2351016260	3104439442	4304	0	0.00004	15:19:24.000324
32	Α	Ιa	2351016260	3104440514	3232	0	0.00003	15:19:24.000327
33	Α	Ιa	2351016260	3104441586	2160	0	0.00003	15:19:24.000330
34	Α	Ιa	2351016260	3104442658	1088	0	0.00003	15:19:24.000333
35	Α	Ιa	2351016260	3104443746	0	0	0.000227	15:19:24.000560
36	Α	Ιw	2351016260	3104443746	3736	0	0.593867	15:19:24.594427
37	A	ο.	3104443746	2351016260	65535	536	0.000082	15:19:24.594509

Interesting Notes:

In packet 1 the sending stack sends only 16 bytes of data. This is because it knows it has filled the window:

3104443730 + 16 - 35392 = 3104408354

The continued series of ACKs (and dropping window sizes) mirrors the arrival of the data packets at the receiving stack.

The zero window occurs in packet 35, and recovers half a second later after 3736 bytes are read in by the receiving application.

Finally, what about packet fragmentation?

- Packet fragmentation occurs when the sending stack uses an MTU greater than can be supported by a router on the path to the receiving stack.
 - Assuming the "Don't Fragment" bit is not turned on in the packet, the router will break the packet into two (or more if needed) packets of a more manageable size.

Note that the fragment has an extra 20 bytes. This accounts for the

additional IP header that must be added to the leftover data.

- Fragmentation slows down a data transfer on numerous levels:
 - There is overhead involved with the process of actually fragmenting the packet
 - Many routers put packets-to-be-fragmented on a separate queue, whereas smaller packets pass through more quickly. This can potentially lead to packets arriving out of order.
 - With two packets now traversing the network, there is a greater likelihood of packets getting dropped, and fragments can arrive out of order
 - Also note that most packets in a bulk data transfer are the same size. So if one packet is fragmented, then it's likely that most of the packets will be fragmented.
 - This doubles the number of packets involved in the transfer, adding to network congestion, and increasing network latency.
 - There's also additional overhead associated with reassembling the fragment once bey reach the receiving stack.

So it's agreed...instead of buying bigger shoes, we'll chop our feet in half and buy more small pairs of shoes.

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

So now that we know what causes performance slow downs, what's the quickest way to diagnose a problem?

- The best method of diagnosing a data transfer performance issue is via a packet trace, using the session format.
- This format will provide you with:
 - Data transfer averages: RTT and throughput
 - Data transfer statistics: number of bytes retransmitted, duration of transfer, maximum amount of unacknowledged data, and window sizes
 - Packet counters: number of duplicate ACKs, retransmitted packets, out-of-order packets, fragments, and zero window sizes
- The session format also provides an easily readable output of the interaction between the two stacks
 - All inbound and outbound packets
 - Organized by connection
 - Output in the order in which the stack received them
 - Does packet analysis and highlights which packets are duplicate ACKs or retransmissions

The session formatter is a pretty handy dandy tool!

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

Sample session formatted output

Window Stats:	Inbound,	Outbound	
Number of windows:	Ο,	566	
Maximum window size:	131072,	131072]
Largest window advertised:	262144,	262144	Window size data
Average window advertised:	240077,	262144	
Smallest window advertised:	141232,	262144	
Window scale factor:	3,	3	
Window frequency:	Ο,	37.2867	Windows/s
Time Stamp updates:	879,	450	
Total Round Trip Time:	19.096576,	19.167232	(99.63%), (100%)
Average Round Trip Time:	0.000000,	0.00000	
Maximum Data in Pipe:	Ο,	156384	The maximum amount
Maximum retransmisson:	Ο,		of uppelypowledged dete
Number of:	Inbound,	Outbound	
Packets:	929,	6797	at any given time
(x) Untraced Packets:	Ο,	0	
(.) In-order data:	Ο,	6782	(0.00%), (99.77%)
(a) Acknowledgments:	877,	1	(94.40%), (0.01%)
(+) Data and ACK:	Ο,	0	(0.00%), (0.00%)
(u) Duplicate ACKs:	1,	2	(0.10%), (0.02%)
(w) Window size updates:	46,	0	(4.95%), (0.00%)
(z) Zero window sizes:	Ο,	0	(0.00%), (0.00%)
(p) Window probes:	Ο,	0	(0.00%), (0.00%)
(k) Keepalive segments:	Ο,	0	(0.00%), (0.00%)
(r) Retransmissions:	Ο,	4	(0.00%), (0.05%)
(o) Out-of-order:	Ο,	6	(0.00%), (0.08%)
(d) Delayed ACKs:	3,	0	(0.32%), (0.00%)
(f) Fragments:	0,	0	(0.00%), (0.00%)

Packet counters and percentages

Use the symbols to locate and identify trouble spots								
within the session formatted trace itself.								
Specifically:								
opecifically.	opecifically.							
	ate ACK							
z - zero w	vindow size							
r - retrans	smission							
f fromme	ant and							
I - Iragine								
Time Spent on: 0 - OUT Of	order packets	Outbound						
(.) In-order data:	00:00:00.000000,	00:00:00.741193	(0.00%),	(3.86%				
(a) Acknowledgments:	00:00:17.459578,	00:00:00.000091	(91.09%),	(0.00%				
(+) Data and ACK:	00:00:00.000000,	00:00:00.000000	(0.00%),	(0.00%				
(u) Duplicate ACKs:	00:00:00.201817,	00:00:00.000089	(1.05%),	(0.00%				
(w) Window size updates:	00:00:00.066940,	00:00:00.000000	(0.34%),	(0.00%				
(z) Zero window sizes:	00:00:00.000000,	00:00:00.000000	(0.00%),	(0.00%				
(p) Window probes:	00:00:00.000000,	00:00:00.000000	(0.00%),	(0.00%				
(k) Keepalive segments:	00:00:00.000000,	00:00:00.000000	(0.00%),	(0.00%				
(r) Retransmissions:	00:00:00.000000,	00:00:00.000368	(0.00%),	(0.00%				
(o) Out-of-order:	00:00:00.000000,	00:00:00.000888	(0.00%),	(0.00%				
(d) Delayed ACKs:	00:00:00.608337,	00:00:00.000000	(3.17%),	(0.00%				
(f) Fragments:	00:00:00.000000,	00:00:00.000000	(0.00%),	(0.00%				
Number of:	Inbound,	Outbound						
(S) SYN:	1,	0	(0.10%),	(0.00%				
(A S) ACK SYN:	0,	1	(0.00%),	(0.01%				
(F) FIN:	1,	1	(0.10%),	(0.01%				
(A F) ACK FIN:	1,	1	(0.10%),	(0.01%				
(R) RST:	0,	0	(0.00%),	(0.00%				
(U) URG:	0,	0	(0.00%),	(0.00%				
Time Spent on:	Inbound,	Outbound						
(S) SYN:	00:00:00.000000,	00:00:00.000000	(0.00%),	(0.00%				
(A S) ACK SYN:	00:00:00.000000,	00:00:00.000113	(0.00%),	(0.00%				
(F) FIN:	00:00:00.079828,	00:00:00.008061	(0.41%),	(0.04%				
(A F) ACK FIN:	00:00:00.000177,	00:00:00.000091	(0.00%),	(0.00%				
(R) RST:	00:00:00.000000,	00:00:00.000000	(0.00%),	(0.00%				
(U) URG:	00:00:00.000000,	00:00:00.000000	(0.00%),	(0.00%				

For More Information....

URL	Content
http://www.ibm.com/servers/eserver/zseries	IBM eServer zSeries Mainframe Servers
http://www.ibm.com/servers/eserver/zseries/networking	Networking: IBM zSeries Servers
http://www.ibm.com/servers/eserver/zseries/networking/technology.html	IBM Enterprise Servers: Networking Technologies
http://www.ibm.com/software/network/commserver	Communications Server product overview
http://www.ibm.com/software/network/commserver/zos/	z/OS Communications Server
http://www.ibm.com/software/network/commserver/z_lin/	Communications Server for Linux on zSeries
http://www.ibm.com/software/network/ccl	Communication Controller for Linux on zSeries
http://www.ibm.com/software/network/commserver/library	Communications Server products - white papers, product documentation, etc.
http://www.redbooks.ibm.com	ITSO redbooks
http://www.ibm.com/software/network/commserver/support	Communications Server technical Support
http://www.ibm.com/support/techdocs/	Technical support documentation (techdocs, flashes, presentations, white papers, etc.)
http://www.rfc-editor.org/rfcsearch.html	Request For Comments (RFC)

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.